Criteria for rational smoothness of some symmetric orbit closures

نویسنده

  • Axel Hultman
چکیده

Let G be a connected reductive linear algebraic group over C with an involution θ. Denote by K the subgroup of fixed points. In certain cases, the K-orbits in the flag variety G/B are indexed by the twisted identities ι(θ) = {θ(w−1)w | w ∈ W} in the Weyl group W . Under this assumption, we establish a criterion for rational smoothness of orbit closures which generalises classical results of Carrell and Peterson for Schubert varieties. That is, whether an orbit closure is rationally smooth at a given point can be determined by examining the degrees in a “Bruhat graph” whose vertices form a subset of ι(θ). Moreover, an orbit closure is rationally smooth everywhere if and only if its corresponding interval in the Bruhat order on ι(θ) is rank symmetric. In the special case K = Sp2n(C), G = SL2n(C), we strengthen our criterion by showing that only the degree of a single vertex, the “bottom one”, needs to be examined. This generalises a result of Deodhar for type A Schubert varieties. Résumé. Soit G un groupe algébrique connexe réductif sur C, équipé d’une involution θ. Soit K le sous–groupe de ses points fixes. Dans certains cas, les orbites des points de la variété de drapeaux G/B sous l’action de K sont indexées par les identités tordues, ι(θ) = {θ(w−1)w | w ∈ W}, du groupe de Weyl W . Sous cette hypothèse, on établit un critère pour la lissité rationnelle des adhérences des orbites, qui généralise des résultats classiques de Carrell et Peterson pour les variétés de Schubert. Plus précisément, on peut déterminer si l’adhérence d’une orbite est rationnellement lisse en examinant les degrés dans un ”graphe de Bruhat” dont les sommets forment un sous– ensemble de ι(θ). En outre, l’adhérence d’une orbite est partout rationnellement lisse si et seulement si l’intervalle correspondant dans l’ordre de Bruhat de ι(θ) est symétrique respectivement au rang. Dans le cas particulier K = Sp2n(C), G = SL2n(C), nous améliorons notre critère en montrant qu’il suffit d’examiner le degré d’un seul sommet, celui ”du bas”. Ceci généralise un résultat de Deodhar pour les variétés de Schubert de type A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projective Rational Smoothness of Varieties of Representations for Quivers of Type A

Let U+ be the positive part of the quantized enveloping algebra U of type An. The change of basis between canonical, and PBW-basis of U+ has a geometric interpretation in terms of local intersection cohomology of some affine algebraic varieties, namely the Zariski closures of orbits of representations of a quiver of type An. In this paper we study the local rational smoothness of these orbit cl...

متن کامل

Alexander Woo and Benjamin

Using recent results of the second author which explicitly identify the “(1, 2, 1, 2)avoiding” GL(p,C)×GL(q,C)-orbit closures on the flag manifold GL(p+q,C)/B as certain Richardson varieties, we give combinatorial criteria for determining smoothness, lci-ness, and Gorensteinness of such orbit closures. (In the case of smoothness, this gives a new proof of a theorem of W.M. McGovern.) Going a st...

متن کامل

The Ring of Sections of a Complete Symmetric Variety

We study the ring of sections A(X) of a complete symmetric variety X, that is of the wonderful completion of G/H where G is an adjoint semi-simple group and H is the fixed subgroup for an involutorial automorphism of G. We find generators for Pic(X), we generalize the PRV conjecture to complete symmetric varieties and construct a standard monomial theory for A(X) that is compatible with G orbit...

متن کامل

Singularities of orbit closures in module varieties and cones over rational normal curves

Let N be a point of an orbit closure OM in a module variety such that its orbit ON has codimension two in OM . We show that under some additional conditions the pointed variety (OM , N) is smoothly equivalent to a cone over a rational normal curve.

متن کامل

Automorphisms, Root Systems, and Compactifications of Homogeneous Varieties

Let G be a complex semisimple group and let H ⊆ G be the group of fixed points of an involutive automorphism of G. Then X = G/H is called a symmetric variety. In [CP], De Concini and Procesi have constructed an equivariant compactification X which has a number of remarkable properties, some of them being: i) The boundary is the union of divisors D1, . . . , Dr. ii) There are exactly 2 orbits. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009